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1 Scope of the Chapter

This chapter provides facilities for investigating and modelling the statistical structure of series of
observations collected at equally spaced points in time. The models may then be used to forecast the
series.

The chapter is divided into methods for

(a) univariate analysis, where consideration is given to the structure within a single series, and
(b) multivariate analysis in which the interdependence of two or more series may be investigated.

This includes models with a single output series depending on a number of input series as well as
multivariate models with each series considered on an equal footing.

For both univariate and multivariate methods, there is a further division into

(i) time domain methods, which model relations between series values separated by various time lags,
and

(ii) frequency domain or spectral methods which interpret time series in terms of component sine waves
of various frequencies.

2 Background to the Problems
2.1 Univariate Time Domain Analysis

Let the given time series be x1, x2, . . . , xn where n is its length. The structure which is intended to be
investigated, and which may be most evident to the eye in a graph of the series, can be broadly described
as

(a) trends – linear or possibly higher-order polynomial;
(b) seasonal patterns, associated with fixed integer seasonal periods. The presence of such seasonality

and the period will normally be known a priori. The pattern may be fixed, or slowly varying from
one season to another;

(c) cycles, or waves of stable amplitude and period p (from peak to peak). The period is not necessarily
integer, the corresponding absolute frequency (cycles/time unit) being f = 1/p and angular
frequency ω = 2πf . The cycle may be of pure sinusoidal form like sin(ωt), or the presence of
higher harmonic terms may be indicated, e.g., by asymmetry in the wave form;

(d) quasi-cycles, i.e., waves of fluctuating period and amplitude; and
(e) irregular statistical fluctuations and swings about the overall mean or trend.

Trends, seasonal patterns, and cycles might be regarded as deterministic components following fixed
mathematical equations, and the quasi-cycles and other statistical fluctuations as stochastic and
describable by short-term correlation structure. For a finite data set it is not always easy to discriminate
between these two types, and a common description using the class of autoregressive integrated moving-
average (ARIMA) models is now widely used. The form of these models is that of difference equations
(or recurrence relations) relating present and past values of the series. The user is referred to Box and
Jenkins [2] for a thorough account of these models and how to use them. We follow their notation and
outline the recommended steps in ARIMA model building for which routines are available.

2.1.1 Transformations

If the variance of the observations in the series is not constant across the range of observations it may be
useful to apply a variance-stabilizing transformation to the series. A common situation is for the variance
to increase with the magnitude of the observations and in this case typical transformations used are the
log or square root transformation. A range–mean or standard deviation–mean plot provides a quick and
easy way of detecting non-constant variance and of choosing, if required, a suitable transformation. This
is a plot of the range or standard deviation of successive groups of observations against their means.

2.1.2 Differencing operations

These may be used to simplify the structure of a time series.

First-order differencing, i.e., forming the new series

∇xt = xt − xt−1
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will remove a linear trend. First-order seasonal differencing

∇sxt = xt − xt−s

eliminates a fixed seasonal pattern.

These operations reflect the fact that it is often appropriate to model a time series in terms of changes
from one value to another. Differencing is also therefore appropriate when the series has something of
the nature of a random walk, which is by definition the accumulation of independent changes.

Differencing may be applied repeatedly to a series giving

wt = ∇d∇D
s xt

where d and D are the orders of differencing. The derived series wt will be shorter, of length
N = n− d− s×D and extend for t = 1 + d+ s×D, . . . , n.

2.1.3 Sample autocorrelations

Given that a series has (possibly as a result of simplifying by differencing operations) a homogeneous
appearance throughout its length, fluctuating with approximately constant variance about an overall
mean level, it is appropriate to assume that its statistical properties are stationary. For most purposes
the correlations ρk between terms xt, xt+k or wt, wt+k separated by lag k give an adequate description of
the statistical structure and are estimated by the sample autocorrelation function (acf) rk, for k = 1, 2, . . ..

As described by Box and Jenkins [2], these may be used to indicate which particular ARIMA model may
be appropriate.

2.1.4 Partial autocorrelations

The information in the autocorrelations ρk may be presented in a different light by deriving from them
the coefficients of the partial autocorrelation function (pacf) φk,k, for k = 1, 2, . . .. φk,k measures the
correlation between xt and xt+k conditional upon the intermediate values xt+1, xt+2, . . . , xt+k−1. The
corresponding sample values φ̂k,k give further assistance in the selection of ARIMA models.

Both acf and pacf may be rapidly computed, particularly in comparison with the time taken to estimate
ARIMA models.

2.1.5 Finite lag predictor coefficients and error variances

The partial autocorrelation coefficient φk,k is determined as the final parameter in the minimum variance
predictor of xt in terms of xt−1, xt−2, . . . , xt−k,

xt = φk,1xt−1 + φk,2xt−2 + · · ·+ φk,kxt−k + ek,t

where ek,t is the prediction error, and the first subscript k of φk,i and ek,t emphasizes the fact that
the parameters will alter as k increases. Moderately good estimates φ̂k,i of φk,i are obtained from the
sample acf, and after calculating the pacf up to lag L, the successive values v1, v2, . . . , vL of the prediction
error variance estimates, vk = var(ek,t), are available, together with the final values of the coefficients
φ̂k,1, φ̂k,2, . . . , φ̂k,L. If xt has non-zero mean, x̄, it is adequate to use xt− x̄, in place of xt in the prediction
equation.

Although Box and Jenkins [2] do not place great emphasis on these prediction coefficients, their use is
advocated for example by Akaike [1], who recommends selecting an optimal order of the predictor as the
lag for which the final prediction error (FPE) criterion (1 + k/n)(1− k/n)−1vk is a minimum.

2.1.6 ARIMA models

The correlation structure in stationary time series may often be represented by a model with a small
number of parameters belonging to the autoregressive moving-average (ARMA) class. If the stationary
series wt has been derived by differencing from the original series xt, then xt is said to follow an
ARIMA model. Taking wt = ∇dxt, the (non-seasonal) ARIMA (p, d, q) model with p autoregressive
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parameters φ1, φ2, . . . , φp and q moving-average parameters θ1, θ2, . . . , θq, represents the structure of wt

by the equation
wt = φ1wt−1 + · · ·+ φpwt−p + at − θ1at−1 − · · · − θqat−q, (1)

where at is an uncorrelated series (white noise) with mean 0 and constant variance σ2
a. If wt has a

non-zero mean c, then this is allowed for by replacing wt, wt−1, . . . by wt − c, wt−1 − c, . . . in the model.
Although c is often estimated by the sample mean of wt this is not always optimal.

A series generated by this model will only be stationary provided restrictions are placed on φ1, φ2, . . . , φp

to avoid unstable growth of wt. These are called stationarity constraints. The series at may also be
usefully interpreted as the linear innovations in xt (and in wt), i.e., the error if xt were to be predicted
using the information in all past values xt−1, xt−2, . . ., provided also that θ1, θ2, . . . , θq satisfy invertibility
constraints. This allows the series at to be regenerated by rewriting the model equation as

at = wt − φ1wt−1 − . . .− φpwt−p + θ1at−1 + . . .+ θqat−q. (2)

For a series with short-term correlation only, i.e., rk is not significant beyond some low lag q (see Box
and Jenkins [2] for the statistical test), then the pure moving-average model MA(q) is appropriate, with
no autoregressive parameters, i.e., p = 0.

Autoregressive parameters are appropriate when the acf pattern decays geometrically, or with a damped
sinusoidal pattern which is associated with quasi-periodic behaviour in the series. If the sample pacf φ̂k,k

is significant only up to some low lag p, then a pure autoregressive model AR(p) is appropriate, with
q = 0. Otherwise moving-average terms will need to be introduced, as well as autoregressive terms.

The seasonal ARIMA (p, d, q, P,D,Q, s) model allows for correlation at lags which are multiples of
the seasonal period s. Taking wt = ∇d∇D

s xt, the series is represented in a two-stage manner via an
intermediate series et

wt = Φ1wt−s + · · ·+ΦPwt−s×P + et −Θ1et−s − · · · −ΘQet−s×Q (3)

et = φ1et−1 + · · ·+ φpet−p + at − θ1at−1 − · · · − θqat−q (4)

where Φi, Θi are the seasonal parameters and P , Q are the corresponding orders. Again, wt may be
replaced by wt − c.

2.1.7 ARIMA model estimation

In theory, the parameters of an ARIMA model are determined by a sufficient number of autocorrelations
ρ1, ρ2, . . .. Using the sample values r1, r2, . . . in their place it is usually (but not always) possible to solve
for the corresponding ARIMA parameters.

These are rapidly computed but are not fully efficient estimates, particularly if moving-average parameters
are present. They do provide useful preliminary values for an efficient but relatively slow iterative method
of estimation. This is based on the least-squares principle by which parameters are chosen to minimize
the sum of squares of the innovations at, which are regenerated from the data using (2), or the reverse
of (3) and (4) in the case of seasonal models.

Lack of knowledge of terms on the right-hand side of (2), when t = 1, 2, . . . ,max(p, q), is overcome by
introducing q unknown series values w0, w1, . . . , w1−q which are estimated as nuisance parameters, and
using correction for transient errors due to the autoregressive terms. If the data w1, w2, . . . , wN = w is
viewed as a single sample from a multivariate Normal density whose covariance matrix V is a function
of the ARIMA model parameters, then the exact likelihood of the parameters is

− 1
2 log |V | −

1
2w

TV −1w.

The least-squares criterion as outlined above is equivalent to using the quadratic form

QF = wTV −1w

as an objective function to be minimized. Neglecting the term − 1
2 log |V | yields estimates which differ

very little from the exact likelihood except in small samples, or in seasonal models with a small number
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of whole seasons contained in the data. In these cases bias in moving-average parameters may cause them
to stick at the boundary of their constraint region, resulting in failure of the estimation method.

Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

The model residuals, ât, are the innovations resulting from the estimation and are usually examined for
the presence of autocorrelation as a check on the adequacy of the model.

2.1.8 ARIMA model forecasting

An ARIMA model is particularly suited to extrapolation of a time series. The model equations are simply
used for t = n + 1, n + 2, . . . replacing the unknown future values of at by zero. This produces future
values of wt, and if differencing has been used this process is reversed (the so-called integration part of
ARIMA models) to construct future values of xt.

Forecast error limits are easily deduced.

This process requires knowledge only of the model orders and parameters together with a limited set of
the terms at−i, et−i, wt−i, xt−i which appear on the right-hand side of the models (3) and (4) (and the
differencing equations) when t = n. It does not require knowledge of the whole series.

We call this the state set. It is conveniently constituted after model estimation. Moreover, if new
observations xn+1, xn+2, . . . come to hand, then the model equations can easily be used to update the
state set before constructing forecasts from the end of the new observations. This is particularly useful
when forecasts are constructed on a regular basis. The new innovations an+1, an+2, . . . may be compared
with the residual standard deviation, σa, of the model used for forecasting, as a check that the model is
continuing to forecast adequately.

2.2 Univariate Spectral Analysis

In describing a time series using spectral analysis the fundamental components are taken to be sinusoidal
waves of the form R cos(ωt + φ), which for a given angular frequency ω, 0 ≤ ω ≤ π, is specified by its
amplitude R > 0 and phase φ, 0 ≤ φ < 2π. Thus in a time series of n observations it is not possible to
distinguish more than n/2 independent sinusoidal components. The frequency range 0 ≤ ω ≤ π is limited
to a shortest wavelength of two sampling units because any wave of higher frequency is indistinguishable
upon sampling (or is aliased with) a wave within this range. Spectral analysis follows the idea that for a
series made up of a finite number of sine waves the amplitude of any component at frequency ω is given
to order 1/n by

R2 =
(

1
n2

)∣∣∣∣∣
n∑

t=1

xte
iωt

∣∣∣∣∣
2

.

2.2.1 The sample spectrum

For a series x1, x2, . . . , xn this is defined as

f∗(ω) =
(

1
2nπ

) ∣∣∣∣∣
n∑

t=1

xte
iωt

∣∣∣∣∣
2

,

the scaling factor now being chosen in order that

2
∫ π

0

f∗(ω)dω = σ2
x,

i.e., the spectrum indicates how the sample variance (σ2
x) of the series is distributed over components in

the frequency range 0 ≤ ω ≤ π.
It may be demonstrated that f∗(ω) is equivalently defined in terms of the sample autocorrelation function
(acf) rk of the series as

f∗(ω) =
(

1
2π

)(
c0 + 2

n−1∑
k=1

ck cos kω

)
,

where ck = σ2
xrk are the sample autocovariance coefficients.
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If the series xt does contain a deterministic sinusoidal component of amplitude R, this will be revealed in
the sample spectrum as a sharp peak of approximate width π/n and height (n/2π)R2. This is called the
discrete part of the spectrum, the variance R2 associated with this component being in effect concentrated
at a single frequency.

If the series xt has no deterministic components, i.e., is purely stochastic being stationary with acf rk,
then with increasing sample size the expected value of f∗(ω) converges to the theoretical spectrum − the
continuous part

f(ω) =
(

1
2π

)(
γ0 + 2

∞∑
k=1

γk cos(ωk)

)
,

where γk are the theoretical autocovariances.

The sample spectrum does not however converge to this value but at each frequency point fluctuates about
the theoretical spectrum with an exponential distribution, being independent at frequencies separated
by an interval of 2π/n or more. Various devices are therefore employed to smooth the sample spectrum
and reduce its variability. Much of the strength of spectral analysis derives from the fact that the error
limits are multiplicative so that features may still show up as significant in a part of the spectrum which
has a generally low level, whereas they are completely masked by other components in the original series.
The spectrum can help to distinguish deterministic cyclical components from the stochastic quasi-cycle
components which produce a broader peak in the spectrum. (The deterministic components can be
removed by regression and the remaining part represented by an ARIMA model).

A large discrete component in a spectrum can distort the continuous part over a large frequency range
surrounding the corresponding peak. This may be alleviated at the cost of slightly broadening the peak
by tapering a portion of the data at each end of the series with weights which decay smoothly to zero.
It is usual to correct for the mean of the series and for any linear trend by simple regression, since they
would similarly distort the spectrum.

2.2.2 Spectral smoothing by lag window

The estimate is calculated directly from the sample covariances ck as

f(ω) =
(

1
2π

)(
c0 + 2

M−1∑
k=1

wkck cos kω

)
,

the smoothing being induced by the lag window weights wk which extend up to a truncation lagM which
is generally much less than n. The smaller the value of M , the greater the degree of smoothing, the
spectrum estimates being independent only at a wider frequency separation indicated by the bandwidth
b which is proportional to 1/M . It is wise, however, to calculate the spectrum at intervals appreciably
less than this. Although greater smoothing narrows the error limits, it can also distort the spectrum,
particularly by flattening peaks and filling in troughs.

2.2.3 Direct spectral smoothing

The unsmoothed sample spectrum is calculated for a fine division of frequencies, then averaged over
intervals centred on each frequency point for which the smoothed spectrum is required. This is usually
at a coarser frequency division. The bandwidth corresponds to the width of the averaging interval.

2.3 Linear Lagged Relationships Between Time Series

We now consider the context in which one time series, called the dependent or output series y1, y2, . . . , yn,
is believed to depend on one or more explanatory or input series, e.g., x1, x2, . . . , xn. This dependency
may follow a simple linear regression, e.g.,

yt = vxt + nt

or more generally may involve lagged values of the input

yt = v0xt + v1xt−1 + v2xt−2 + · · ·+ nt.

The sequence v0, v1, v2, . . . is called the impulse response function (IRF) of the relationship. The term nt

represents that part of yt which cannot be explained by the input, and it is assumed to follow a univariate
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ARIMA model. We call nt the (output) noise component of yt, and it includes any constant term in the
relationship. It is assumed that the input series, xt, and the noise component, nt, are independent.

The part of yt which is explained by the input is called the input component zt:

zt = v0xt + v1xt−1 + v2xt−2 + · · ·

so yt = zt + nt.

The eventual aim is to model both these components of yt on the basis of observations of y1, y2, . . . , yn

and x1, x2, . . . , xn. In applications to forecasting or control both components are important. In general
there may be more than one input series, e.g., x1,t and x2,t, which are assumed to be independent and
corresponding components z1,t and z2,t, so

yt = z1,t + z2,t + nt.

2.3.1 Transfer function models

In a similar manner to that in which the structure of a univariate series may be represented by a finite-
parameter ARIMA model, the structure of an input component may be represented by a transfer function
(TF) model with delay time b, p autoregressive-like parameters δ1, δ2, . . . , δp and q+1 moving-average-like
parameters ω0, ω1, . . . , ωq:

zt = δ1zt−1 + δ2zt−2 + · · ·+ δpzt−p + ω0xt−b − ω1xt−b−1 − · · · − ωqxt−b−q .

If p > 0 this represents an IRF which is infinite in extent and decays with geometric and/or sinusoidal
behaviour. The parameters δ1, δ2, . . . , δp are constrained to satisfy a stability condition identical to the
stationarity condition of autoregressive models. There is no constraint on ω0, ω1, . . . , ωq.

2.3.2 Cross-correlations

An important tool for investigating how an input series xt affects an output series yt is the sample
cross-correlation function (CCF) rxy(k), for k = 0, 1, 2, . . . between the series. If xt and yt are (jointly)
stationary time series this is an estimator of the theoretical quantity

ρxy(k) = corr(xt, yt+k).

The sequence ryx(k), for k = 0, 1, 2, . . . is distinct from rxy(k), though it is possible to interpret

ryx(k) = rxy(−k).

When the series yt and xt are believed to be related by a transfer function model, the CCF is determined
by the IRF v0, v1, v2, . . . and the autocorrelation function of the input xt.

In the particular case when xt is an uncorrelated series or white noise (and is uncorrelated with any other
inputs)

ρxy(k) ∝ vk

and the sample CCF can provide an estimate of vk:

ṽk = (sy/sx)rxy(k)

where sy and sx are the sample standard deviations of yt and xt, respectively.

In theory the IRF coefficients vb, . . . , vb+p+q determine the parameters in the TF model, and using ṽk to
estimate ṽk it is possible to solve for preliminary estimates of δ1, δ2, . . . , δp, ω0, ω1, . . . , ωq.

2.3.3 Prewhitening or filtering by an ARIMA model

In general an input series xt is not white noise, but may be represented by an ARIMA model with
innovations or residuals at which are white noise. If precisely the same operations by which at is generated
from xt are applied to the output yt to produce a series bt, then the transfer function relationship between
yt and xt is preserved between bt and at. It is then possible to estimate

ṽk = (sb/sa)rab(k).

The procedure of generating at from xt (and bt from yt) is called prewhitening or filtering by an ARIMA
model. Although at is necessarily white noise, this is not generally true of bt.
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2.3.4 Multi-input model estimation

The term multi-input model is used for the situation when one output series yt is related to one or
more input series xj,t, as described in Section 2.3. If for a given input the relationship is a simple linear
regression, it is called a simple input; otherwise it is a transfer function input. The error or noise term
follows an ARIMA model.

Given that the orders of all the transfer function models and the ARIMA model of a multi-input model
have been specified, the various parameters in those models may be (simultaneously) estimated.

The procedure used is closely related to the least-squares principle applied to the innovations in the
ARIMA noise model.

The innovations are derived for any proposed set of parameter values by calculating the response of each
input to the transfer functions and then evaluating the noise nt as the difference between this response
(combined for all the inputs) and the output. The innovations are derived from the noise using the
ARIMA model in the same manner as for a univariate series, and as described in Section 2.1.5.

In estimating the parameters, consideration has to be given to the lagged terms in the various model
equations which are associated with times prior to the observation period, and are therefore unknown.
The subroutine descriptions provide the necessary detail as to how this problem is treated.

Also, as described in Section 2.1.6 the sum of squares criterion

S =
∑

a2
t

is related to the quadratic form in the exact log-likelihood of the parameters:

− 1
2 log |V | −

1
2w

TV −1w.

Here w is the vector of appropriately differenced noise terms, and

wTV −1w = S/σ2
a,

where σ2
a is the innovation variance parameter.

The least-squares criterion is therefore identical to minimization of the quadratic form, but is not identical
to exact likelihood. Because V may be expressed as Mσ2

a, where M is a function of the ARIMA model
parameters, substitution of σ2

a by its maximum likelihood estimator yields a concentrated (or profile)
likelihood which is a function of

|M |1/NS.

N is the length of the differenced noise series w, and |M | = detM .

Use of the above quantity, called the deviance, D, as an objective function is preferable to the use of S
alone, on the grounds that it is equivalent to exact likelihood, and yields estimates with better properties.
However, there is an appreciable computational penalty in calculating D, and in large samples it differs
very little from S, except in the important case of seasonal ARIMA models where the number of whole
seasons within the data length must also be large.

The user is given the option of taking the objective function to be either S or D, or a third possibility,
the marginal likelihood. This is similar to exact likelihood but can counteract bias in the ARIMA model
due to the fitting of a large number of simple inputs.

Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

The model residuals ât are the innovations resulting from the estimation, and they are usually examined
for the presence of either autocorrelation or cross-correlation with the inputs. Absence of such correlation
provides some confirmation of the adequacy of the model.

2.3.5 Multi-input model forecasting

A multi-input model may be used to forecast the output series provided future values (possibly forecasts)
of the input series are supplied.
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Construction of the forecasts requires knowledge only of the model orders and parameters, together with
a limited set of the most recent variables which appear in the model equations. This is called the state
set. It is conveniently constituted after model estimation. Moreover, if new observations yn+1, yn+2, . . .
of the output series and xn+1, xn+2, . . . of (all) the independent input series become available, then the
model equations can easily be used to update the state set before constructing forecasts from the end of
the new observations. The new innovations an+1, an+2, . . . generated in this updating may be used to
monitor the continuing adequacy of the model.

2.3.6 Transfer function model filtering

In many time series applications it is desired to calculate the response (or output) of a transfer function
model for a given input series.

Smoothing, detrending, and seasonal adjustment are typical applications. The user must specify the
orders and parameters of a transfer function model for the purpose being considered. This may then be
applied to the input series.

Again, problems may arise due to ignorance of the input series values prior to the observation period.
The transient errors which can arise from this cause may be substantially reduced by using ‘backforecasts’
of these unknown observations.

2.4 Multivariate Time Series

Multi-input modelling represents one output time series in terms of one or more input series. Although
there are circumstances in which it may be more appropriate to analyse a set of time series by modelling
each one in turn as the output series with the remainder as inputs, there is a more symmetric approach
in such a context. These models are known as vector autoregressive moving-average (VARMA) models.

2.4.1 Differencing and transforming a multivariate time series

As in the case of a univariate time series, it may be useful to simplify the series by differencing operations
which may be used to remove linear or seasonal trend, thus ensuring that the resulting series to be used
in the model estimation is stationary. It may also be necessary to apply transformations to the individual
components of the multivariate series in order to stabilize the variance. Commonly used transformations
are the log and square root transformations.

2.4.2 Model identification for a multivariate time series

Multivariate analogues of the autocorrelation and partial autocorrelation functions are available for
analysing a set of k time series, xi,1, xi,2, . . . , xi,n, for i = 1, 2, . . . , k, thereby making it possible to
obtain some understanding of a suitable VARMA model for the observed series.

It is assumed that the time series have been differenced if necessary, and that they are jointly stationary.
The lagged correlations between all possible pairs of series, i.e.,

ρijl = corr(xi,t, xj,t+l)

are then taken to provide an adequate description of the statistical relationships between the series. These
quantities are estimated by sample auto- and cross-correlations rijl. For each l these may be viewed as
elements of a (lagged) autocorrelation matrix.

Thus consider the vector process xt (with elements xit) and lagged autocovariance matrices Γl with
elements of σiσjρijl where σ2

i = var(xi,t). Correspondingly, Γl is estimated by the matrix Cl with
elements sisjrijl where s

2
i is the sample variance of xit.

For a series with short-term cross-correlation only, i.e., rijl is not significant beyond some low lag q, then
the pure vector MA(q) model, with no autoregressive parameters, i.e., p = 0, is appropriate.

The correlation matrices provide a description of the joint statistical properties of the series. It is also
possible to calculate matrix quantities which are closely analogous to the partial autocorrelations of
univariate series (see Section 2.1.3). Wei [6] discusses both the partial autoregression matrices proposed
by Tiao and Box [5] and partial lag correlation matrices.
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In the univariate case the partial autocorrelation function (pacf) between xt and xt+l is the correlation
coefficient between the two after removing the linear dependence on each of the intervening variables
xt+1, xt+2, . . . , xt+l−1. This partial autocorrelation may also be obtained as the last regression coefficient
associated with xt when regressing xt+l on its l lagged variables xt+l−1, xt+l−2, . . . , xt. Tiao and Box [5]
extended this method to the multivariate case to define the partial autoregression matrix. Heyse and Wei
[4] also extended the univariate definition of the pacf to derive the correlation matrix between the vectors
xt and xt+l after removing the linear dependence on each of the intervening vectors xt+1, xt+2, . . . , xt+l−1,
the partial lag correlation matrix.

Note that the partial lag correlation matrix is a correlation coefficient matrix since each of its elements is a
properly normalised correlation coefficient. This is not true of the partial autoregression matrices (except
in the univariate case for which the two types of matrix are the same). The partial lag correlation matrix
at lag 1 also reduces to the regular correlation matrix at lag 1; this is not true of the partial autoregression
matrices (again except in the univariate case).

Both the above share the same cut-off property for autoregressive processes; that is for an autoregressive
process of order p, the terms of the matrix at lags p+ 1 and greater are zero. Thus if the sample partial
cross-correlations are significant only up to some low lag p then a pure vector AR(p) model is appropriate
with q = 0. Otherwise moving-average terms will need to be introduced as well as autoregressive terms.

Under the hypothesis that xt is an autoregressive process of order l − 1, n times the sum of the squared
elements of the partial lag correlation matrix at lag l is asymptotically distributed as a χ2 variable with
k2 degrees of freedom where k is the dimension of the multivariate time series. This provides a diagnostic
aid for determining the order of an autoregressive model.

The partial autoregression matrices may be found by solving a multivariate version of the Yule–Walker
equations to find the autoregression matrices, using the final regression matrix coefficient as the partial
autoregression matrix at that particular lag.

The basis of these calculations is a multivariate autoregressive model:

xt = φl,1xt−1 + · · ·+ φl,lxt−l + el,t

where φl,1, φl,2, . . . , φl,l are matrix coefficients, and el,t is the vector of errors in the prediction. These
coefficients may be rapidly computed using a recursive technique which requires, and simultaneously
furnishes, a backward prediction equation:

xt−l−1 = ψl,1xt−l + ψl,2xt−l+1 + · · ·+ ψl,lxt−1 + fl,t

(in the univariate case ψl,i = φl,i).

The forward prediction equation coefficients, φl,i, are of direct interest, together with the covariance
matrix Dl of the prediction errors el,t. The calculation of these quantities for a particular maximum
equation lag l = L involves calculation of the same quantities for increasing values of l = 1, 2, . . . , L.

The quantities vl = detDl/ det Γ0 may be viewed as generalized variance ratios, and provide a measure
of the efficiency of prediction (the smaller the better). The reduction from vl−1 to vl which occurs on
extending the order of the predictor to l may be represented as

vl = vl−1(1 − ρ2l )

where ρ2l is a multiple squared partial autocorrelation coefficient associated with k2 degrees of freedom.

Sample estimates of all the above quantities may be derived by using the series covariance matrices Cl,
for l = 1, 2, . . . , L, in place of Γl. The best lag for prediction purposes may be chosen as that which yields
the minimum final prediction error (FPE) criterion:

FPE(l) = vl ×
(1 + lk2/n)
(1− lk2/n)

.

An alternative method of estimating the sample partial autoregression matrices is by using multivariate
least-squares to fit a series of multivariate autoregressive models of increasing order.
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2.4.3 VARMA model estimation

The cross-correlation structure of a stationary multivariate time series may often be represented by
a model with a small number of parameters belonging to the vector autoregressive moving-average
(VARMA) class. If the stationary series wt has been derived by transforming and/or differencing the
original series xt, then wt is said to follow the VARMA model:

wt = φ1wt−1 + · · ·+ φpwt−p + εt − θ1εt−1 − · · · − θqεt−q,

where εt is a vector of uncorrelated residual series (white noise) with zero mean and constant covariance
matrix Σ, φ1, φ2, . . . , φp are the p autoregressive (AR) parameter matrices and θ1, θ2, . . . , θq are the q
moving-average (MA) parameter matrices. If wt has a non-zero mean µ, then this can be allowed for by
replacing wt, wt−1, . . . by wt − µ,wt−1 − µ, . . . in the model.

A series generated by this model will only be stationary provided restrictions are placed on φ1, φ2, . . . , φp

to avoid unstable growth of wt. These are stationarity constraints. The series εt may also be usefully
interpreted as the linear innovations in wt, i.e., the error if wt were to be predicted using the information
in all past values wt−1, wt−2, . . ., provided also that θ1, θ2, . . . , θq satisfy what are known as invertibility
constraints. This allows the series εt to be generated by rewriting the model equation as

εt = wt − φ1wt−1 − · · · − φpwt−p + θ1εt−1 + · · ·+ θqεt−q.

The method of maximum likelihood may be used to estimate the parameters of a specified VARMA
model from the observed multivariate time series together with their standard errors and correlations.

The residuals from the model may be examined for the presence of autocorrelations as a check on the
adequacy of the fitted model.

2.4.4 VARMA model forecasting

Forecasts of the series may be constructed using a multivariate version of the univariate method. Efficient
methods are available for updating the forecasts each time new observations become available.

2.5 Cross-spectral Analysis

The relationship between two time series may be investigated in terms of their sinusoidal components at
different frequencies. At frequency ω a component of yt of the form

Ry(ω) cosωt− φy(ω)

has its amplitude Ry(ω) and phase lag φy(ω) estimated by

Ry(ω)e
iφy(ω) =

1
n

n∑
t=1

yte
iωt

and similarly for xt. In the univariate analysis only the amplitude was important − in the cross analysis
the phase is important.

2.5.1 The sample cross-spectrum

This is defined by

f∗xy(ω) =
1

2πn

(
n∑

t=1

yte
iωt

)(
n∑

t=1

xte
−iωt

)
.

It may be demonstrated that this is equivalently defined in terms of the sample CCF, rxy(k), of the series
as

f∗xy(ω) =
1
2π

(n−1)∑
−(n−1)

cxy(k)e
iωk

where cxy(k) = sxsyrxy(k) is the cross-covariance function.

G13.12 [NP3390/19/pdf]



G13 – Time Series Analysis Introduction – G13

2.5.2 The amplitude and phase spectrum

The cross-spectrum is specified by its real part or cospectrum cf∗(ω) and imaginary part or quadrature
spectrum qf∗(ω), but for the purpose of interpretation the cross-amplitude spectrum and phase spectrum
are useful:

A∗(ω) = |f∗xy(ω)|, φ∗(ω) = arg(f∗xy(ω)).

If the series xt and yt contain deterministic sinusoidal components of amplitudes Ry, Rx and phases
φy, φx at frequency ω, then A∗(ω) will have a peak of approximate width π/n and height (n/2π)RyRx at
that frequency, with corresponding phase φ∗(ω) = φy − φx. This supplies no information that cannot be
obtained from the two series separately. The statistical relationship between the series is better revealed
when the series are purely stochastic and jointly stationary, in which case the expected value of f∗xy(ω)
converges with increasing sample size to the theoretical cross-spectrum

fxy(ω) =
1
2π

∞∑
−∞

γxy(k)e
iωk

where γxy(k) = cov(xt, yt+k). The sample spectrum, as in the univariate case, does not, however,
converge to the theoretical spectrum without some form of smoothing which either implicitly (using a lag
window) or explicitly (using a frequency window) averages the sample spectrum f∗xy(ω) over wider bands
of frequency to obtain a smoothed estimate f̂xy(ω).

2.5.3 The coherency spectrum

If there is no statistical relationship between the series at a given frequency, then fxy(ω) = 0, and the
smoothed estimate f̂xy(ω), will be close to 0. This is assessed by the squared coherency between the
series:

Ŵ (ω) =
|f̂xy(ω)|2

f̂xx(ω)f̂yy(ω)

where f̂xx(ω) is the corresponding smoothed univariate spectrum estimate for xt, and similarly for yt.
The coherency can be treated as a squared multiple correlation. It is similarly invariant in theory not
only to simple scaling of xt and yt, but also to filtering of the two series, and provides a useful test
statistic for the relationship between autocorrelated series. Note that without smoothing,

|f∗xy(ω)|2 = f∗xx(ω)f
∗
yy(ω),

so the coherency is 1 at all frequencies, just as a correlation is 1 for a sample of size 1. Thus smoothing
is essential for cross-spectrum analysis.

2.5.4 The gain and noise spectrum

If yt is believed to be related to xt by a linear lagged relationship as in Section 2.3, i.e.,

yt = v0xt + v1xt−1 + v2xt−2 + · · ·+ nt,

then the theoretical cross-spectrum is

fxy(ω) = V (ω)fxx(ω)

where

V (ω) = G(ω)eiφ(ω) =
∞∑

k=0

vke
ikω

is called the frequency response of the relationship.

Thus if xt were a sinusoidal wave at frequency ω (and nt were absent), yt would be similar but multiplied
in amplitude by G(ω) and shifted in phase by φ(ω). Furthermore, the theoretical univariate spectrum

fyy(ω) = G(ω)
2fxx(ω) + fn(ω)

where nt, with spectrum fn(ω), is assumed independent of the input xt.
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Cross-spectral analysis thus furnishes estimates of the gain

Ĝ(ω) = |f̂xy(ω)|/f̂xx(ω)

and the phase
φ̂(ω) = arg

(
f̂xy(ω)

)
From these representations of the estimated frequency response V̂ (ω), parametric TF models may be
recognised and selected. The noise spectrum may also be estimated as

f̂y|x(ω) = f̂yy(ω)
(
1− Ŵ (ω)

)
– a formula which reflects the fact that in essence a regression is being performed of the sinusoidal
components of yt on those of xt over each frequency band.

Interpretation of the frequency response may be aided by extracting from V̂ (ω) estimates of the IRF
v̂k. It is assumed that there is no anticipatory response between yt and xt, i.e., no coefficients vk with
k = −1,−2 are needed (their presence might indicate feedback between the series).

2.5.5 Cross-spectrum smoothing by lag window

The estimate of the cross-spectrum is calculated from the sample cross-variances as

f̂xy(ω) =
1
2π

M+S∑
−M+S

wk−Scxy(k)e
iωk.

The lag window wk extends up to a truncation lag M as in the univariate case, but its centre is shifted
by an alignment lag S usually chosen to coincide with the peak cross-correlation. This is equivalent to
an alignment of the series for peak cross-correlation at lag 0, and reduces bias in the phase estimation.

The selection of the truncation lag M , which fixes the bandwidth of the estimate, is based on the same
criteria as for univariate series, and the same choice of M and window shape should be used as in
univariate spectrum estimation to obtain valid estimates of the coherency, gain etc., and test statistics.

2.5.6 Direct smoothing of the cross-spectrum

The computations are exactly as for smoothing of the univariate spectrum except that allowance is made
for an implicit alignment shift S between the series.

2.6 Kalman Filters

Kalman filtering provides a method for the analysis of multi-dimensional time series. The underlying
model is:

Xt+1 = AtXt +BtWt

Yt = CtXt + Vt

where Xt is the unobserved state vector, Yt is the observed measurement vector, Wt is the state noise,
Vt is the measurement noise, At is the state transition matrix, Bt is the noise coefficient matrix and Ct

is the measurement coefficient matrix at time t. The state noise and the measurement noise are assumed
to be uncorrelated with zero mean and covariance matrices:

E{WtW
T
t } = Qt and E{VtV

T
t } = Rt

If the system matrices At, Bt, Ct and the covariance matrices Qt,Rt are known then Kalman filtering
can be used to compute the minimum variance estimate of the stochastic variable Xt.

The estimate of Xt given observations Y1 to Yt−1 is denoted by X̂t|t−1 with state covariance matrix
E{X̂t|t−1X̂

T
t|t−1} = Pt|t−1 while the estimate of Xt given observations Y1 to Yt is denoted by X̂t|t with

covariance matrix E{X̂t|tX̂
T
t|t} = Pt|t.

The update of the estimate, X̂t+1|t, from time t to time t+ 1, is computed in two stages.
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First, the update equations are:

X̂t|t = X̂t|t−1 +Ktrt, Pt|t = (I −KtCt)Pt|t−1

where the residual rt = Yt − CtXt|t−1 has an associated covariance matrix Ht = CtPt|t−1C
T
t + Rt, and

Kt is the Kalman gain matrix with
Kt = Pt|t−1C

T
t H

−1
t .

The second stage is the one-step-ahead prediction equations given by:

X̂t+1|t = AtX̂t|t, Pt+1|t = AtPt|tA
T
t +BtQtB

T
t .

These two stages can be combined to give the one-step-ahead update-prediction equations:

X̂t+1|t = AtX̂t|t−1 +AtKtrt.

The above equations thus provide a method for recursively calculating the estimates of the state vectors
X̂t|t and X̂t+1|t and their covariance matrices Pt|t and Pt+1|t from their previous values. This recursive
procedure can be viewed in a Bayesian framework as being the updating of the prior by the data Yt.

The initial values X̂1|0 and P1|0 are required to start the recursion. For stationary systems, P1|0 can be
computed from the following equation:

P1|0 = A1P1|0A
T
1 +B1Q1B

T
1 ,

which can be solved by iterating on the equation. For X̂1|0 the value E{X} can be used if it is available.

2.6.1 Computational methods

To improve the stability of the computations the square root algorithm is used One recursion of the
square root covariance filter algorithm which can be summarized as follows:

R
1/2
t CtSt 0

0 AtSt BtQ
1/2
t


U =


H1/2

t 0 0

Gt St+1 0




where U is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-
hand post-array, St is the lower triangular Cholesky factor of the state covariance matrix Pt+1|t, Q

1/2
t

and R1/2
t are the lower triangular Cholesky factor of the covariance matrices Q and R and H1/2 is the

lower triangular Cholesky factor of the covariance matrix of the residuals. The relationship between the
Kalman gain matrix, Kt, and Gt is given by

AtKt = Gt

(
H

1/2
t

)−1

.

To improve the efficiency of the computations when the matrices At, Bt and Ct do not vary with time
the system can be transformed to give a simpler structure, the transformed state vector is U∗X where
U∗ is the transformation that reduces the matrix pair (A,C) to lower observer Hessenberg form. That
is, the matrix U∗ is computed such that the compound matrix,(

CU∗T

U∗AU∗T

)
is a lower trapezoidal matrix. The transformations need only be computed once at the start of a series,
and the covariance matrices Qt and Rt can still be time-varying.

2.6.2 Model fitting and forecasting

If the state space model contains unknown parameters, θ, these can be estimated using maximum
likelihood. Assuming that Wt and Vt are normal variates the log-likelihood for observations Yt, t =
1, 2, . . . , n is given by

constant− 1
2

n∑
t=1

ln(det(Ht))−
1
2

t∑
t=1

rTt H
−1
t rt

Optimal estimates for the unknown model parameters θ can then be obtained by using a suitable optimizer
routine to maximize the likelihood function.

Once the model has been fitted forecasting can be performed by using the one-step-ahead prediction
equations. The one-step-ahead prediction equations can also be used to ‘jump over’ any missing values
in the series.
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2.6.3 Kalman filter and time series models

Many commonly used time series models can be written as state space models. A univariate ARMA(p, q)
model can be cast into the following state space form

xt = Axt−1 +Bεt
wt = Cxt

where r = max(p, q + 1), the first element of the state vector xt is wt,

A =




φ1 1
φ2 1
. .
. .
φr−1 1
φr 0 0 . . 0



, B =




1
−θ1
−θ2
.
.
.
−θr−1



and CT =




1
0
0
.
.
.
0



.

The representation for a k-variate ARMA(p, q) series (VARMA) is very similar to that given above,
except now the state vector is of length kr and the φ’s and θ’s are now k×k matrices and the 1’s in A, B
and C are now the identity matrix of order k. If p < r or q + 1 < r then the appropriate φ or θ matrices
are set to zero, respectively.

Since the compound matrix (
C
A

)
is already in lower observer Hessenberg form (i.e., it is lower trapezoidal with zeros in the top right-
hand triangle) the invariant Kalman filter algorithm can be used directly without the need to generate a
transformation matrix U∗.

3 Recommendations on Choice and Use of Available Routines
Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Time Domain Techniques – ARMA type models

This section is divided into routines for univariate, input-output and multivariate time-series modelling.
The term input-output refers to time-series modelling of a single-output series dependent on one or
more input series; this is also referred to as transfer function or multi-input modelling. These areas are
discussed in relation to the process of model identification, estimation, checking and forecasting.

3.1.1 Univariate Series

(a) Model identification

The routine G13AUF may be used in obtaining either a range–mean or standard deviation–mean
plot for a series of observations, which may be useful in detecting the need for a variance-stabilising
transformation. G13AUF computes the range or standard deviation and the mean for successive
groups of observations and G01AGF may then be used to produce a scatter plot of range against
mean or of standard deviation against mean.

The routine G13AAF may be used to difference a time series. The N = n− d− s×D values of the
differenced time series which extends for t = 1+ d+ s×D, . . . , n are stored in the first N elements
of the output array.

The routine G13ABF may be used for direct computation of the autocorrelations. It requires the
time series as input, after optional differencing by G13AAF.

An alternative is to use G13CAF, which uses the FFT to carry out the convolution for computing
the autocovariances. Circumstances in which this is recommended are

(i) if the main aim is to calculate the smoothed sample spectrum,
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(ii) if the series length and maximum lag for the autocorrelations are both very large, in which
case appreciable computing time may be saved.

For more precise recommendations, see Gentleman and Sande [3]. In this case the autocorrelations
rk need to be obtained from the autocovariances ck by rk = ck/c0.

The routine G13ACF computes the partial autocorrelation function and prediction error variance
estimates from an input autocorrelation function. Note that G13DNF, which is designed for
multivariate time series, may also be used to compute the partial autocorrelation function together
with χ2 statistics and their significance levels.

Finite lag predictor coefficients are also computed by the routine G13ACF. It may have to be used
twice, firstly with a large value for the maximum lag L in order to locate the optimum FPE lag,
then again with L reset to this lag.

The routine G13DXF may be used to check that the autoregressive part of the model is stationary
and that the moving-average part is invertible.

(b) Model estimation

The routine G13ADF is used to compute preliminary estimates of the ARIMA model parameters,
the sample autocorrelations of the appropriately differenced series being input. The model orders
are required.

The main routine for parameter estimation for ARIMA models is G13AEF, and an easy-to-use
version is G13AFF. Both these routines use the least-squares criterion of estimation.

In some circumstances the use of G13BEF or G13DCF, which use maximum likelihood, is
recommended.

The routines require the time series values to be input, together with the ARIMA orders. Any
differencing implied by the model is carried out internally. They also require the maximum number
of iterations to be specified, and return the state set for use in forecasting.

G13AEF should be preferred to G13AFF for:

(i) more information about the differenced series, its backforecasts and the intermediate series;

(ii) greater control over the output at successive iterations;

(iii) more detailed control over the search policy of the non-linear least-squares algorithm;

(iv) more information about the first and second derivatives of the objective function during and
upon completion of the iterations.

G13BEF is primarily designed for estimating relationships between time series. It is, however, easily
used in a univariate mode for ARIMA model estimation. The advantage is that it allows (optional)
use of the exact likelihood estimation criterion, which is not available in G13AEF or G13AFF. This
is particularly recommended for models which have seasonal parameters, because it reduces the
tendency of parameter estimates to become stuck at points on the parameter space boundary. The
model parameters estimated in this routine should be passed over to G13AJF for use in univariate
forecasting.

The routine G13DCF is primarily designed for fitting vector ARMA models to multivariate time
series but may also be used in a univariate mode. It allows the use of either the exact or conditional
likelihood estimation criterion, and allows the user to fit non-multiplicative seasonal models which
are not available in G13AEF, G13AFF or G13BEF.

(c) Model checking

G13ASF calculates the correlations in the residuals from a model fitted by either G13AEF or
G13AFF. In addition the standard errors and correlations of the residual autocorrelations are
computed along with a portmanteau test for model adequacy. G13ASF can be used after a univariate
model has been fitted by G13BEF, but care must be taken in selecting the correct inputs to G13ASF.
Note that if G13DCF has been used to fit a non-multiplicative seasonal model to a univariate series
then G13DSF may be used to check the adequacy of the model.
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(d) Forecasting using an ARIMA model

Given that the state set produced on estimation of the ARIMA model by either G13AEF or G13AFF
has been retained, G13AHF can be used directly to construct forecasts for xn+1, xn+2, . . ., together
with probability limits. If some further observations xn+1, xn+2, . . . have come to hand since model
estimation (and there is no desire to re-estimate the model using the extended series), then G13AGF
can be used to update the state set using the new observations, prior to forecasting from the end
of the extended series. The original series is not required.

The routine G13AJF is provided for forecasting when the ARIMA model is known but the state set
is unknown. For example, the model may have been estimated by a procedure other than the use of
G13AEF or G13AFF, such as G13BEF. G13AJF constructs the state set and optionally constructs
forecasts with probability limits. It is equivalent to a call to G13AEF with zero iterations requested,
followed by an optional call to G13AHF, but it is much more efficient.

3.1.2 Input-output/transfer function modelling

(a) Model identification

Normally use G13BCF for direct computation of cross-correlations, from which cross-covariances
may be obtained by multiplying by sysx, and impulse response estimates (after prewhitening) by
multiplying by sy/sx, where sy, sx are the sample standard deviations of the series.

An alternative is to use G13CCF, which exploits the FFT to carry out the convolution for computing
cross-covariances. The criteria for this are the same as given in Section 3.1.1 for calculation of
autocorrelations. The impulse response function may also be computed by spectral methods without
prewhitening using G13CGF.

G13BAF may be used to prewhiten or filter a series by an ARIMA model.

G13BBF may be used to filter a time series using a transfer function model.

(b) Estimation of input-output model parameters

The routine G13BDF is used to obtain preliminary estimates of transfer function model parameters.
The model orders and an estimate of the impulse response function (see Section 3.2.1) are required.

The simultaneous estimation of the transfer function model parameters for the inputs, and ARIMA
model parameters for the output, is carried out by G13BEF.

This routine requires values of the output and input series, and the orders of all the models. Any
differencing implied by the model is carried out internally.

The routine also requires the maximum number of iterations to be specified, and returns the state
set for use in forecasting.

(c) Input-output model checking

The routine G13ASF, primarily designed for univariate time series, can be used to test the residuals
from an input-output model.

(d) Forecasting using an input-output model

Given that the state set produced on estimation of the model by G13BEF has been retained, the
routine G13BHF can be used directly to construct forecasts of the output series. Future values of
the input series (possibly forecasts previously obtained using G13AHF) are required.

If further observations of the output and input series have become available since model estimation
(and there is no desire to re-estimate the model using the extended series) then G13BGF can be
used to update the state set using the new observations prior to forecasting from the end of the
extended series. The original series are not required.

The routine G13BJF is provided for forecasting when the multi-input model is known, but the
state set is unknown. The set of output and input series must be supplied to the routine which
then constructs the state set (for future use with G13BGF and/or G13BHF) and also optionally
constructs forecasts of the output series in a similar manner to G13BHF.

In constructing probability limits for the forecasts, it is possible to allow for the fact that future
input series values may themselves have been calculated as forecasts using ARIMA models. Use of
this option requires that these ARIMA models be supplied to the routine.
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(e) Filtering a time series using a transfer function model

The routine for this purpose is G13BBF.

3.1.3 Multivariate series

(a) Model identification

The routine G13DLF may be used to difference the series. The user must supply the differencing
parameters for each component of the multivariate series. The order of differencing for each
individual component does not have to be the same. The routine may also be used to apply a
log or square root transformation to the components of the series.

The routine G13DMF may be used to calculate the sample cross-correlation or cross-covariance
matrices. It requires a set of time series as input. The user may request either the cross-covariances
or cross-correlations.

The routine G13DNF computes the partial lag correlation matrices from the sample cross-
correlation matrices computed by G13DMF, and the routine G13DPF computes the least-squares
estimates of the partial autoregression matrices and their standard errors. Both routines compute
a series of χ2 statistic that aid the determination of the order of a suitable autoregressive model.
G13DBF may also be used in the identification of the order of an autoregressive model. The routine
computes multiple squared partial autocorrelations and predictive error variance ratios from the
sample cross-correlations or cross-covariances computed by G13DMF.

The routine G13DXF may be used to check that the autoregressive part of the model is stationary
and that the moving-average part is invertible.

(b) Estimation of VARMA model parameters

The routine for this purpose is G13DCF. This routine requires a set of time series to be input,
together with values for p and q. The user must also specify the maximum number of likelihood
evaluations to be permitted and which parameters (if any) are to be held at their initial (user-
supplied) values. The fitting criterion is either exact maximum likelihood or conditional maximum
likelihood.

G13DCF is primarily designed for estimating relationships between time series. It may, however,
easily be used in univariate mode for non-seasonal and non-multiplicative seasonal ARIMA model
estimation. The advantage is that it allows (optional) use of the exact maximum likelihood
estimation criterion, which is not available in either G13AEF or G13AFF. The conditional likelihood
option is recommended for those models in which the parameter estimates display a tendency to
become stuck at points on the boundary of the parameter space. When one of the series is known
to be influenced by all the others, but the others in turn are mutually independent and do not
influence the output series, then G13BEF (the transfer function model fitting routine) may be
more appropriate to use.

(c) VARMA model checking

G13DSF calculates the cross-correlation matrices of residuals for a model fitted by G13DCF. In
addition the standard errors and correlations of the residual correlation matrices are computed
along with a portmanteau test for model adequacy.

(d) Forecasting using a VARMA model

The routine G13DJF may be used to construct a chosen number of forecasts using the model
estimated by G13DCF. The standard errors of the forecasts are also computed. A reference vector
is set up by G13DJF so that should any further observations become available the existing forecasts
can be efficiently updated using G13DKF. On a call to G13DKF the reference vector itself is also
updated so that G13DKF may be called again each time new observations are available.

3.2 Frequency Domain Techniques
3.2.1 Univariate spectral estimation

Two routines are available, G13CAF carrying out smoothing using a lag window and G13CBF carrying
out direct frequency domain smoothing. Both can take as input the original series, but G13CAF alone can
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use the sample autocovariances as alternative input. This has some computational advantage if a variety
of spectral estimates needs to be examined for the same series using different amounts of smoothing.

However, the real choice in most cases will be which of the four shapes of lag window in G13CAF to use, or
whether to use the trapezium frequency window of G13CBF. The references may be consulted for advice
on this, but the two most recommended lag windows are the Tukey and Parzen. The Tukey window has
a very small risk of supplying negative spectrum estimates; otherwise, for the same bandwidth, both give
very similar results, though the Parzen window requires a higher truncation lag (more acf values).

The frequency window smoothing procedure of G13CBF with a trapezium shape parameter p 
 1
2

generally gives similar results for the same bandwidth as lag window methods with a slight advantage
of somewhat less distortion around sharp peaks, but suffering a rather less smooth appearance in fine
detail.

3.2.2 Cross-spectrum estimation

Two routines are available for the main step in cross-spectral analysis. To compute the cospectrum and
quadrature spectrum estimates using smoothing by a lag window, G13CCF should be used. It takes as
input either the original series or cross-covariances which may be computed in a previous call of the same
routine or possibly using results from G13BCF. As in the univariate case, this gives some advantage if
estimates for the same series are to be computed with different amounts of smoothing.

The choice of window shape will be determined as the same as that which has already been used in
univariate spectrum estimation for the series.

For direct frequency domain smoothing, G13CDF should be used, with similar consideration for the
univariate estimation in choice of degree of smoothing.

The cross-amplitude and squared coherency spectrum estimates are calculated, together with upper and
lower confidence bounds, using G13CEF. For input the cross-spectral estimates from either G13CCF or
G13CDF and corresponding univariate spectra from either G13CAF or G13CBF are required.

The gain and phase spectrum estimates are calculated together with upper and lower confidence bounds
using G13CFF. The required input is as for G13CEF above.

The noise spectrum estimates and impulse response function estimates are calculated together with
multiplying factors for confidence limits on the former, and the standard error for the latter, using
G13CGF. The required input is again the same as for G13CEF above.

3.3 Kalman filtering

Two routines are available for Kalman filtering: G13EAF for time varying systems and G13ABF for
time invariant systems. The latter will optionally compute the required transformation to lower observer
Hessenberg form. Both these routines return the Cholesky factor of the residual covariance matrix, Ht,
with the Cholesky factor of the state covariance matrix St+1 and the Kalman gain matrix, Kt pre-
multiplied by At, in the case of G13EBF these may be for the transformed system. To compute the
updated state vector and the residual vector the required matrix-vector multiplications can be performed
by F06PAF (SGEMV/DGEMV).

3.4 Time Series Simulation

There are routines available in Chapter G05 for generating a realisation of a time series from a specified
model: G05EGF and G05EWF for univariate time series and G05HDF for multivariate time series.

4 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

G13DAF
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